

Red Storm Update HPC User Forum

Erik P. DeBenedictis

Outline

- Project Organization
- Processor
- Network and Network Topology
- Light Weight Kernel (LWK)
- Reliability, Availability and Serviceability (RAS)

Project Organization

- ASCI Red was very successful
- Red Storm RFQ very nearly ASCI Red sped up by Moore's Law (7x)
- Cray is selling Red Storm to Sandia as a custom product
 - However, Sandia is supplying key expertise for this specific architecture to Cray, and
 - Sandia supplying a major part of the systems software to Cray for integration into Cray's product
- This organization is working

Processor

- Sandia did not specify a processor, but concurs with Cray that the Opteron is a very good choice
- Sandia conducted an evaluation of many available processors
 - Considered overall ability of a processor to integrate into a system
 - Specifically considered FLOPS, memory bandwidth, I/O bandwidth, power consumption
 - Ran benchmarks of top Sandia/ASCI codes

Processor Specifics

- Processors
 - AMD Sledgehammer (Opteron)
 - 2.0 GHz
 - 64 Bit extension to IA32 instruction set
 - 64 KB L1 instruction and data caches on chip
 - 1 MB L2 shared (Data and Instruction) cache on chip
 - Integrated dual DDR memory controllers @ 333 MHz
 - Integrated 3 Hyper Transport Interfaces @ 3.2 GB/s each direction
- Node memory system
 - Page miss latency to local processor memory is <140 ns
 - Peak bandwidth of ~5.3 GB/s for each processor

Network and Network Topology

- Sandia has had very good experiences with the mesh topology
 - ASCI applications tend to be physical in nature. Mapping a 3D problem to a 3D machine preserves locality and maximizes us of fast "nearest neighbor" links.
 - Space-shared batch processing creates a communications locality that matches meshes very well
 - Works well with Red/Black switching
- Meshes look very promising for the future
 - The longest wire in the network determines performance
 - Meshes need no long wires

Red Storm Topology

- Red Storm RFQ specifies a 3D mesh, Sandia and Cray concurred on specific topology
- Compute node topology:
 - $-27 \times 16 \times 24 (x, y, z)$
 - Mesh in x & y, torus in z
 - Red/Black split: 2,688 4,992 2,688
- Service and I/O node topology
 - 2 x 8 x 24 (x, y, z) on each end
 - 192 full bandwidth links to Compute Node Mesh (384 available)

Red Storm Topology

Advantages and Disadvantages

+ Works well for space-shared batch processing

- An application crossing the narrowest point of the mesh has a "bisection bandwidth" constraint
 - Not sure Sandia has any of these

Interconnect Performance

- Interconnect performance
 - MPI Latency <2 μs (neighbor), <5 μs (full machine)
 - Peak link bandwidth ~3.0 GB/s each direction (sustained 1.8 GB/s each direction)
 - Minimum bi-section bandwidth 1.5 TB/s
- I/O system performance
 - Sustained file system bandwidth of 50 GB/s for each color
 - Sustained external network bandwidth of 25 GB/s for each color

Light Weight Kernel

- Sandia has had very good experiences with LWK
 - Sandia-University of New Mexico Operating System (SUNMOS)
 - Cougar
 - Puma
 - Now Catamount (tell story about name)
- Why?
 - Timing stability
 - Maturity

LWK & Musical Rehearsal

N musicians Rehearsing 2 Minute Pieces

Musical Rehearsal with Breaks

2 Minute Pieces with Asynchronous Breaks

Breaks in MPP Systems Software

- Unix, Linux, any OS
 - Kernel memory allocation
 - TCP/IP backoff calculations
 - Routing tables
 - Clock synchronization
 - Scheduler
 - Etc., full list unknown,
 but has been extremely
 problematic with DOE
 labs

- Light Weight Kernel
 - [Intentionally blank]

Run Time Impact of Unix Systems Services

- Say breaks take 50 µS and occur once per second
 - On one CPU, wasted time is 50 μs every second
 - Negligible .005% impact
 - On 100 CPUs, wasted time is 5 ms every second
 - Negligible .5% impact
 - On 10,000 CPUs, wasted time is 500 ms
 - Significant 50% impact
- Red Storm will be 10,000 CPUs, <u>but will not have</u> asynchronous services

Red Storm Systems Software

- Operating Systems
 - LINUX on service and I/O nodes
 - LWK (Catamount) on compute nodes
 - LINUX on RAS nodes
- Run-Time System
 - Logarithmic loader
 - Node allocator
 - Batch system PBS
 - Libraries MPI, I/O, Math
- Parallel File System
 - Several file systems are being evaluated

Reliability, Availability, and Serviceability

- Red Storm RFQ specifies 100 hour MTBI
 - You would take a PC back to Best Buy if it crashed every 4 days
 - However, Red Storm must be able to continue operating while nodes fail and get replaced just to meet this standard
- Red Storm will have a separate RAS network and system of 2500 Unix processors to manage the main machine
 - Will be able to pause running programs, reconfigure hardware, and continue

RAS Network

- RAS Workstations
 - Separate and redundant RAS workstations for Red and Black ends of machine
 - System administration and monitoring interface
 - Error logging and monitoring for major system components including processors, memory, NIC/Router, power supplies, fans, disk controllers, and disks
- RAS Network: Dedicated Ethernet network for connecting RAS nodes to RAS workstations
- RAS Nodes
 - One for each compute board
 - One for each cabinet

Red Storm Performance

Peak of ~ 40 TF

Expected MP-Linpack performance >20 TF

Aggregate system memory bandwidth - ~55 TB/s

Interconnect

Aggregate sustained interconnect bandwidth > 100 TB/s

MPI Latency - $2 \mu s$ neighbor, $5 \mu s$ across machine

Bi-Section bandwidth ~2.3 TB/s

Link bandwidth ~3.0 GB/s in each direction

Disk and External Network I/O

Sustained 50 GB/s each color parallel disk I/O

Sustained 25 GB/s each color external network I/O

Red Storm Hardware Status

Card Layout - Top View

- 24 Boards
- 96 Operton™ Processors
- EMI containment
- Vertical Air Cooling

Red Storm Hardware Status

Due Duestation a Dealer

Comparison of ASCI Red and Red Storm

	ASCI Red	Red Storm
Full System Operational Time Frame	June 1997 (Processor and Memory Upgrade in 1999)	August 2004
Theoretical Peak (TF)	3.15	41.47
MP-Linpack Performance (TF)	2,379	>20 (est)
Architecture	Distributed Memory MIMD	Distributed Memory MIMD
Number of Compute Node Processors	9,460	10,368
Processor	Intel P II @ 333 MHz	AMD Opteron @ 2.0 GHz
Total Memory	1.2 TB	10.4 TB (up to 80 TB)
System Memory B/W	2.5 TB/s	55 TB/s
Disk Storage	12.5 TB	240 TB
Parallel File System B/W	1.0 GB/s each color	50.0 GB/s each color
External Network B/W	0.2 GB/s each color	25 GB/s each color
Interconnect Topology	3-D Mesh (x, y, z) 38 X 32 X 2	3-D Mesh (x, y, z) 27 X 16 X 24

Comparison of ASCI Red and Red Storm

	ASCI Red	Red Storm
Interconnect Performance		
MPI Latency	15 μs 1 hop, 20 μs max	2.0 μs 1 hop, 5 μs max
Bi-Directional Link B/W	800 MB/s	6.0 GB/s
Minimum Bi-section B/W	51.2 GB/s	2.3 TB/s
Full System RAS		
RAS Network	10 Mbit Ethernet	100 Mbit Ethernet
RAS Processors	1 for each 32 CPUs	1 for each 4 CPUs
Operating System		
Compute Nodes	Cougar	Catamount (Cougar)
Service and I/O Nodes	TOS (OSF1)	LINUX
RAS Nodes	VX-Works	LINUX
Red Black Switching	2260 - 4940 - 2260	2688 - 4992 - 2688
System Foot Print	~2500 sq ft	~ 3000 sq ft
Power Requirement	850 KW	1.7 MW

